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The purpose of the present paper is to study the three-dimensional general solution and Green’s
functions in transversely isotropic thermoelastic diffuson media for static problem. With this objective,
two displacement functions are introduced to simplify the basic equation and a general solution is then
obtained by using the operator theory. Based on the obtained general solution, the three- dimensional
Green’s functions for a study point heat source on the apex of a transversely isotropic thermoelastic
cone are constructed by four newly introduced harmonic functions. The components of displacement,
stress, temperature distribution and mass concentration are expressed in terms of elementary

functions and are convenient to use. When the apex angle 2a equals to 7, then we obtain the solution
for semi-infinite body with a surface point. From the present investigation, a special case of interest is
deduced to depict the effect of diffusion on components of stress and temperature distribution.

Key words: Thermoelastic diffuson media, Green’s function, transversely isotropic.

INTRODUCTION

Fundamental solutions or Green’s functions play an
important role in the solution of numerous problems in the
mechanics and physics of solids. Green’s functions can
be used to construct many analytical solutions of
boundary value problems. They are essential in boundary
element method as well as the study of cracks, defects
and inclusion. They are a basic building block of future
works. For example, fundamental solutions can be used
to construct many analytical solutions of practical
problems when boundary conditions are imposed. Ding et
al. (1996) derived the general solutions for coupled
equations in piezoelectric media. Dunn and Wienecke
(1999) investigated the half space Green’s functions in
transversely isotropic piezoelectric solid. Pan and Tanon

(2000) studied the Green’s functions for three
dimensional problems in anisotropic piezoelectric solids.
When thermal effects are considered, Sharma (1958)
investigated the fundamental solution in transversely
isotropic thermoelastic material in an integral form. Chen
et al. (2004) derived the three dimensional general
solution in transversely isotropic thermoelastic materials.
Hou et al. (2008, 2009) investigated the Green'’s function
for two and three-dimensional problem for a steady point
heat source in the interior of a semi-infinite thermoelastic
material. Also, Hou et al. (2011) investigated the two
dimensional general solutions and fundamental solutions
in orthotropic thermoelastic materials.

Diffusion can be defined as random walk of assembly

*Corresponding author. E-mail: rajneesh_kumar@rediffmail.com
Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution

License 4.0 International License
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of particles from a high concentration region to a low
concentration region. An example of diffusion is heat
transport or movement transport. Thermal diffusion
utilizes the transfer of heat across a thin liquid or gas to
accomplish isotope separation. Today, thermoelasticity
remains a practical process to separate isotopes of noble
gases (e.g. xexon) and other light isotopes (e.g. carbon)
for research purposes.

Nowacki (1974a, b, c, d) developed the theory of
thermoelastic diffusion by using coupled thermoelastic
model. Sherief and Saleh (2005) developed the
generalized theory of thermoelastic diffusion with one
relaxation time which allows finite speeds of propagation
of waves. Kumar and Kansal (2008) derived the basic
equations for generalized thermoelastic diffusion (G-L
model) and discussed the Lamb waves. When diffusion
effects are considered, Kumar and Chawla (2011a)
derived the Fundamental solution in orthotropic
thermoelastic diffusion material. Kumar and Chawla
(2011b) discussed the plane wave propagation in the
context of anisotropic three-phase-lag and two-phase-lag
model of thermoelasticity. Kumar and Chawla (2012)
derived the Green’s functions for two-dimensional
problem in orthotropic thermoelastic diffusion media.
Recently, Kumar and Chawla (2013) discussed the
problem of reflection and transmission in thermoelastic
media with three-phase-lag model. However, the
important Green’s function for three-dimensional problem
function in transversely isotropic thermoelastic diffuson
material has not been discussed so far.

Keeping in view of these applications, the three
dimensional general solution and Green’s function in
transversely isotropic thermoelastic diffuson elastic
medium for steady state problem was studied. After
applying the dimensionless quantities and using the
operator theory, the general expression for displacement
components, mass concentration and temperature
change are derived in terms of four harmonic functions.
By virtue of the obtained general solution, the three-
dimensional Green’s functions for a study point heat
source on the apex of a transversely isotropic
thermoelastic cone are constructed by four newly
introduced harmonic functions. From the present
investigation, a special case of interest is also deduced to
depict the effect of diffusion.

Basic equations

Following Sherief and Saleh (2005) the basic governing
equations for homogenous anisotropic generalized
thermoelastic diffusion solid in the absence of body
forces, heat and mass diffusion sources are:

(1) Constitutive relations:

o; =C

i = Cigm&im T8 T +b;C

1)
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(2) Equations of motion:

Cikm€imj T 1 +bij C,j = A;

&)
(3) Equation of heat conduction:
pC.T+aT,C-a;Té =K,T; )
(4) Equation of mass diffusion:
— 0t By — @ DC,y+az; AT, =—C @

Here. Uik (=Cij =Cjin =Cijr)
a; (= a; ) bij (= bji)

thermal and diffusion moduli.  is the density and Ce is

the specific heat at constant strain, ab are respective
coefficients describing the measure of thermoelastic

diffusion effects and of diffusion effects, To is the
reference temperature assumed to be such that
T U . +U;
— <<l P Bl 1
To Kij (= Kji ), Gj (= O-ji) and ! 2

denote the components of thermal conductivity, stress

and strain tensor respectively. 1*¥%ZD s the

are elastic parameters;

are respectively, the tensor of

temperature change from the reference temperature To

and C is the mass concentration. Ui is a component of
displacement vector while ay (= a; are diffusion
parameters.

In the above equations, the symbol (,) followed by a
suffix denotes differentiation with respect to spatial
coordinate and a superposed dot (".") denotes the
derivative with respect to time respectively.

Following Slaughter (2002), applying the transformation,

we have:

X'=XC0Sg+Yysing, 'y =—xsing+ycosg, z'=z, ©)
Where ¢ is the angle of rotation in the X — Z plane. In the
Equations (1) to (4), the stress-strain-temperature-
concentration relation, equations of motion, heat
conduction and mass diffusion equation in homogeneous,
transversely isotropic thermoelastic diffusion media in

cartesian coordinates *¥:2) can be written as:

O Cn Cp, Cis 0 0 0 Eax CH b1

Oy G Cyy Ci3 0 0 0 eW Ch b1
Ou|_|Ca Cs C O 0 0 |le, B T b, c

Oy Cos 0 0 zeyz 0 0

[opm 0 Cyy 0 |2, 0

o, 10 0 0 0 0 2] [0] [0] ©)
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i azu 2u+(c +C )azv +(ci3+c¢ )i—
g2 T2t Gl 5 Tlas ) ag

oT . oC ol

taMa )
(cp+cC )i+c 6—2V+c a—zv+c o' +(ci3+C )62—W—
1275660 5oy 66 52 11ay2 o Tt
LR A
Yy oy Da?
(8)
2 2 2 A2
(C13+C44) +((:13 44)ﬂ+C4457\2V+CM57\/2V+c33g_
oyor OX oy oL
q_p L

a Ca L 9)

oT oC ou ov oW
pCE8t+aT()at+T°[al(ax+8y)+aaaz):

by| ar | +— il u+a*ﬂ +by ar i+i v+a*a—sv +

R A R Mooy o) oy
E
2

bl o 3 o° «w 0% @2
| ——+—— WHas— |+alag| 5+ T +a3— |-
e o) ot Hax? oy

bl o i+ i ay o’c 27@
Yoo 2 Ya ot (11)
Where
& =-80;, b=-"hs, K =Kg, lis not summed
Coe = Cy ;C12 _
and

FORMULATION OF THE PROBLEM

We consider a homogenous transversely isotropic
thermoelastic diffusion medium. Let us take Oxyz as the
frame of reference in Cartesian coordinates.

For three dimensional problems, we assume the
displacement vector, temperature distribution and mass
concentration are respectively, of the form:

d=(u,v,w), TxVzt), CXYV,z1). (12)
Moreover, we are discussing steady problem
u_ov_ow_oT _C

ot ot ot ot ot (13)

We define the dimensionless quantities as:

*

(x’, y .z u v, Wb, r’):&(x, Y,Z,U,V,W,b,r),

Vi
’ ’ 1
(T'.C')==(aT.bC),
11
O-ij’ = i ’ "= & H,
a:I.’TO C11}<3
Where
2 o, = aty .
Vl = bl’ Kl (14)
Applying the dimensionless quantities defined by

Equation (14) in Equations (7) to (11), after suppressing

the primes, we obtain:
2 2 2 2 2
[a+526+5162]u+ 53;( ]v+[54 aiaz W—(%)T—[%]C=O,
o/ oy (15)

PXRRCPY:
2 2 2 2
paat b st Rk
oay Moo e ) Mewy ) )y (16)
(5 o Ju+[5 62] + 51(622+822]+§5522 W—gl(ﬁJT—yl(ijC:O,
et ooy & Ca a & 17)
Gl
X2 ay z (18)
a{q[az aZJN*aZ} q[az 62j+q*az}v+a{q*[az+62j+q*az}w
o ayt) Cat| oyl ) Cat| | el o) tard

Maz az}q*a?} ez aZ]q }co
) Pa Y (19)

Where

G

1 ay b, K,
—(C4a o0 Ciot Cop CratCanCagh &1 ==, 11 =
11 &

(51y52,53.54y55)=

0,665 =l o oo s s - efofn il

1 1

(%’QS) b (ala)lb a’swlb)

& =(Cy +Cp)a +Ci0t3, 85 = 20,04 +Cy, by =(Cyy +Cpp )ty +Ci3y,
by = 2C,,01,, + Coyty, G5 = %

STATIC GENERAL SOLUTIONS

Two displacements functions ‘¥ and G are introduced
as follows:



oY oG

" & & o (20)

Using the displacements functions ¥ and CIT
Equations (15) - (19), we obtain

[52(8—22+ o j+5 o J‘I’ o,
ox* oy oz* (1)

-0z 0
|
o o o o

(22)

where Dis the differential operator matrix given by

+61§Z—2 -5% 1 1
—(SAA% 51A+55;—22 —yla—az _615%
faseinl] il o] ol
0 0 0 A+53§Z—22

Equation (22) is a homogeneous set of differential

equations inGWT.C  1he general solution by the
operator theory is as follows:

G=AF, Ww=AF  C=AF  T=AF (=1234

The determinant of the matrix D is given as:

6 2 2
D| = (aaa+bAa4+cA2§+dA3J [A+£3§2J,
Z Z (24)

Wherea’b’é’d and Aare given in Appendix A. The
function Fin Equation (23) satisfies the following

homogeneous equation:

DIF =0 25

123

It can be seen that if | = are taken in Equation (23),

three general solutions are obtained in which T =0
These solutions are identical to those without thermal fact

and are not discussed here. Therefore if i =4 should be
taken in Equation (23), the following solution is obtained:
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2 4
:8\{’—( A%bAj2 *s Ja':
% 2 (26)
2 4
v=a;]—(alA2+blAaaz+laa4jaF,
X z* ) oy 27)
7 2 4
:(a2A2+b2A§2+C2§4]aaFu
Z Z Z (28)
2 4 6
C=(a1A3+b3A2§2+C3A§4+d4§6jF,
z z 7 (29)
6 4 2
T= (a§+bA§+cA2§ +dA3J
z z 22 (30)

Whereg‘i’bl G(i=123) and d4 are given in Appendix B.

(r,0,2),

In cylindrical coordinate the general solution can

be easily obtained. In fact, the expression for W,T and C
are identical to that in Equations (26) to (31), while those

r radial and circumferential displacements Ur and Yo are,
respectively
2 4

ur:a;; [a1A2+bAaa +cl§ jaF

r z° z* (31)

2 4
S [ T L
r r (32)

* 18 1 9%
=Gttt
Here or? ror r? o0
coordinates.
The general solutions of Equation (25) in terms of

F can be rewritten as:

4 2 2
11 62+ 82 F=0,
ox° oz

= i

is the Laplacian in polar

(33)

where

, and 5;(1=123) are three roots
(with positive real part) of the following algebraic equation

s® —bs* +cs*—d =0. (34)
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As known from the generalized Almansi theorem (Ding et

al., 1996) the function F can be expressed in terms of
four harmonic functions:

F=F+F,+F+F

4 for distinct Sj (1=1234),

1)

F= F+F +F+ZF S]_¢82¢S3=S47

2) 4 for

1 7S, =83 =8,,
3)F F+F +ZF+Z F4f0l’ 2 3 4

2 F=FR+zR +2°F+2°F, ;,, 51 =S, =53 = Sy,

F. - . . .
where ! satisfies the following harmonic equation

0? 0° .

_—t F = 0 (J = 1,2,3,4)-

aXZ a -ZJ J
[ Z (35)

The general solution for the case of distinct roots can be
derived as follows:

M & O°F N & OF
Uu=—— L V=—"o— ,

oy JZ:;‘ P oxaz! X JZ:; P z|

o°F, 0°F, o°F
W= ZSpZJas’ ‘Z 3166’ T:p446264'
t o (36)

Where
Py =3 —bs?+Cs] (k=12
Py; =8, +bys} —C;s] +d,S]

P, =—d +Cs? —bs; +as;

In the similar way general solution for the other three
cases can be derived. Equation (36) can be further
simplified by taking

64
plj az = l//] 1 (J = 112’3’4)
(37)
and writing Vo=V
4 0y 4 0y 4 ow .
=%_Zﬁ,\/=_%_2ﬁ, szsjpljﬁ
0y L OX OoX oy j=1 aZJ-

4 %y, o’y
C=3YP;—5 T=P,—*,
Where
Plj :pzj/plj’ sz :p3j/plj' P34:p44/p14
The function Vi satisfies the harmonic equations
o° .
A+—— 2 =0 j=012,34.
az, (39)
In which
Z, =S,2,S, = %
0 7 20%1°0 T 4| &
o,

In cylindrical coordinates(rﬁ’ z)

W, T,C  will remain the same as given in Equation (38),
while the components of displacement in cylindrical
coordinates are

, the expression for

a\Po 4 al//J 6‘PO 4 al)”]
Sy, =

u, = - :
Y rog A or or ;rae

(40)

Introducing the following notations for the components

both in Cartesian coordinate (x,y,2)

(r,6,2) ,

and cylindrical

coordinate

- '0 -
U=u+iv=e“(u, +iu,),

0, =0y +0,, =0, +0y,
_ . 26 :
0,=0,—0, +2ic0, =e" (0, —0y +2ic,),

_ P ) ;
7, =0, +io, =¢e"(o, +io,).

Upon using the notations, the general solution in

Equation (38) in the Cartesian coordinate (x.y.2) can be
simplified as

4
u:q&%+z%}

j=1
4 62‘//' 82(//

C= 3Py St =Pl
= ] )

4
01_22(%6 rjs )A‘PJ, azz—zcgsrf{ilPNZle]

i1

o, {Z S0 = L isyChy —2 Oty

j 0

o, = —Z I’jA‘I’j,

i=t

(41)



Where
I, o +i i
ox oy
2 2
A= 8_2 + 6_2
ox= oy in Cartesian coordinates (x,y,2),
o> 0 02

+7 [
or® ror  r?06° in cylindrical coordinates (F+¢2)

and
C11+013P 5 CIlPZJ C11'334
ry = 7 =yl Pj) =
S
* * 2 * *
—Cy3—C338Pj +&1C11Ps4 +71C11Ps;, (42)
(Cll’C13’C33’C44’C66) = (C117C13’C33’C44’C66 )
1'0 (43)
. . : Y,=0
For non-torsional axisymmetric problem, and
Y. (j=1234 .
J(J )are independent  of 0, such  that
Ug = Oand GZ@ :GFH :0
The general solution given by equations in cylindrical
coordinate (r.6,2) can be simplified to the following form:
: foD & 2
zl Z i ‘//, c- ZP2 WJ’ T:PML(/?,
j=L 8 j j =l azj 624

10 w, o’y *4161//,» N A
Oy _zaez ZSJ i 622 10y = es%;?‘é(sjwj_zcee)&i?|

4 821/11- 4 0 V/]
0, = er a—z ZsjrJ araz

= (44)

) , , VY. =0 (j=1234)
For torsional axisymmetric problem ! ,

Yo is  independent  of o, so  that

=U,=0T=0C=0 0« =0p=0,=0,=0.
The general solution can be simplified as:

. 07,

Uy =— }PO:O'za =—5Cas orer.
0

My *[1 G
1910 TEYEE| 5 A2 A2
or 201; or (45)
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BOUNDARY CONDITIONS OF CONE

We consider a transversely isotropic thermoelastic

) ) EZCOIO{ 2 )
diffusion cone r , Where 4Cis the apex angle,

whose isotropic plane is perpendicular to Z ~axis. At the
origin of the coordinate system, the apex is to be taken.

At the apex, a concentrated force P=pd+ Pyt Pk, a
M =M,i+M,i+Mk

],k

concentrated moment and a point

heat source H are applied, where are three unit

vectors of Cartesian coordinates (X’ Y Z)'
In addition, the cone is loaded on the surface with

prescribed density of normal heat flux Gy and surface

X=X.e +X,.e,+X,e, €,€,,€,

forces where are

three unit vectors of cylindrical coordinates (r.6,2)
i, J,k

which are related to by the following relations:

e, =icosd+ jsing, e, =isin@+ jcosH, e, =k. (46)

The boundary conditions in cylindrical coordinates on the
z/r =cota

cone

o, cosa—o, sina=X,, (47)
o.,C0sa—o, sina=X,, (48)
o, Cosa —o,,sina =X, (49)

Klgcosa— K, ﬂsinoc =q,,,
or oz (50)

oC oC _. —
—cCosa — K, —sina =17,,.
oz

or (51)

As shown in Figure 1, when a segment of cone cut off by

z :b, its global mechanical concentration and thermal
equilibrium equations will be:

27 btana th
P+j j(a £ +0,8,+0,8, rdrd9+” +X,8,+ X g, )dzdd tan o/cos = 0,
00

(52)

wr
00

27 btana
M+j j -boe, +(bo, —0,)8, +10,e,)rdrdd +
00
2rh _ o _
.[ j[—X,er +(X, =X, tana)e, + X, tan ae, )2’ dzdtan a/cosa =0,
% (53)
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X
yA

Figure 1. A thermoelastic diffusion cone under loading.
2 btana 2z b
J. j —rdrd0+ j _[(Kaqm sina + K., cose)zdzdd tan o/ cosa = —H,
0 0 (54)
27 btana 6C
j j rdrdg + J' j(nm sina +,, cosa)zdzdd tan ar/cosa = 0.

i (55)

Green'’s function for a point heat source H on the apex of
a transversely isotropic thermoelastic diffusion material.
We consider the case only, when point heat source

His applied at the apex and the surface of the cone is
traction free, impermeable and thermally insulated, that
is,

px:py:pz=oi Mx:My:MZ:O’

X =X, =X, =0,

and qm = ﬁm = O
The general solution given by Equation (44) is derived in
this section.

For non-torsional axisymmetric problem, introduce the
following harmonic functions:
\PO = 0

¥, = A(z;10gR] —-R)), (i=12,34)

and (56)

Substituting the values of lPJ from Equation (56) in
Equation (44), we have:

4 LA
u=YAL, we zs A TogR],  C=) Rt
SR TR s)
A 4 4 A 4 A
T:PMR—A, Z ZSJZ JRfJ, Zr]?’
" =R, = i = (58)
LA S A : r
O :chszRij Z(S?Wj _ZCGG)EJ' 0 = 2 SiNA RR"
e = i = i (59)

For non-torsional axisymmetric problem, the boundary
condition in Equation (48) has been satisfied, and
Equations (49) to (51) can be deduced from the global
mechanical, impermeable and thermal equilibrium
condition in Equations (52). The only boundary condition
in Equation (47) and the following equations need to be
satisfied:

27 btana

j jazzrd rdd =0,
0 0 (60)

K:f bTa grd rdd =—H,

0 0 62 (61)
27 btana
[ ] Zrarw-o,
0 o0 oz (62)

Substituting the values of ey Oy C and T from

Equation (57) in Equations (47) and (60 to 62) yields

ZA I - sw; 1 -5t L Y
Vj tana Wj tana WV, 63)

T (64)

A (65)
S4 P — L
(H4tana ]54 244 27K (66)
Where
H; =\1+s}/tana, N, =H, +s, /tana  (j=123).
Ai(j=1234)

The constants can be determined by
solving Equations (63) to (66). When the cone has been



T
a=—
reduced to a semi-infinite body, that is, 2 then

(67)

Using Equation (49) in Equations (45) to (48) can be
simplified as:

4
ZAjsjrj =0,
j=1

(68)
4
> A =0,
= (69)
4
D siP;A =0,
= (70)
H
Al=g
27K,s,P,, (71)
We have determined four constants AJ(J :1'2’3) from

three equations including Equations (68) to (71) by the
method of Cramer’s rule.

Special case

In the absence of diffusion effects, that is,
=hb,=a=b=0 . )
by =D; ' Equations (57) to (59) yields
S A A . LA
Uy :ZAJ-?, u, =Y s;PjA;sign2)logR;), T :P23R—,
iz Rj i 4
3 . 3 A 3 A
—2C* 7J_ SZW'fl, = r.ijY
Orr GGER; Jz::l i R, On JEZZI j R,
L3 A 3 LA 3 ;
059=2C662%_Z(SJWJ _2C66)R71v Oy =D ST} A, S|gr(z*)ry
JELIE i i RjRj (72)
$1,59,59,5,. . $,5-,S
where 1'°2'93'%4i5 this case are reduces to 1’72’73
K
=y
with 3 and 51,52 are two roots (with positive real

part) of the equation

scd P2 A
as” —bs“+€¢=0, (73)

and
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1 Pr3
Py =4, —bess (k=12),
Py =85~ DS} + €357, 8y =3, By =85 — e, by =ye,
83.=03, b3 = (87 ~67)~ 35, 3 =5,35.

Uz and

Consider the continuity at plane 2=0 for
O and substituting the values of 92:%2 and T from

Equations (64) with the aid of S3=1K1/Kg yield the
following equations in the absence of diffusion:

3 —
ZSJ' Plj Aj :O.
j=L

(74)
3
Zs jA; =0.
1= (75)
and
H

A= o

27ZK354 P24

The constants Aj (1=12) are determined by two
Equations (74) and (75) using the method of Cramer’s
rule.

The above results are similar as obtained by Hou et al.
(2005).

NUMERICAL RESULTS AND DISCUSSION

Here, the numerical discussions are reported and
analysis is conducted for magnesium material. Following
Dhaliwal and Singh (2005), the values of physical
constants are taken as:

€11 =5.974x10°N.m2 ¢}, = 2.624x10"°N.m?, ¢, 3 = 2.17x10°N.m2,
C33 =6.17x10"°N.m? ¢ =3.278x10°°N.m, T, = .298x10°K,

a, =2.68x1PNmM 2K %, a, =2.68x10° Nm?K *, K, =1.7x10PWm*K %,
K, =17 x10PWm?*K™?, o = 2.1><10‘4m3.Kg_1’ o, = 2.5><1(T“'m3.Kg’1,
a=24x10"m%s72K ™, b=13x10°Kgnrs ?, a; :.95><10'8m‘3.s.Kg’
a3 =.90x10°m 35 Kg.

Figures 2 to 5 depict the variations of radial displacement

U,

axial displacement uZ’temperature change T and
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Figure 3. Variation of axial displacement Yt I

mass concentration C w.r.t. I for thermoelastic diffusion
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corresponds to thermoelastic theory (VVTDZ=5),
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Figure 5. Variation of mass concentration distribution C wrt T

Figure 2 shows that the values of Uy in case of WTD
slightly decrease for smaller values of ' and for higher

values of ''the values of Ur become dispersionless,
although for the case of WD, the values of Ur increase

for all values of I It is noticed that the values of Ur in
case of WD remain more in comparison with WTD.

Figure 3 depicts that the values of us in case of WTD
decrease for all values of r whereas for the case of WD,



the values of Uz slightly increase for smaller values of
I and finally becomes constant.

It is evident that the values of Uzin case of WD remain
more in comparison with WTD. Figure 4 shows that the

values of T in case of WTD slightly decreases for all
values of " although for the case of WD, the values of
T increase for all values of I' It is noticed that the values
of Tin case of WD remain more in comparison with
WTD. Figure 5 depicts that the values of C in case of
2=35 glightly decrease for all values of Fs whereas for the
case of Z=10 the values of C increases for all values of
r. It is evident that the values of Tin case of
Z =35 remain more in comparison with Z =10.

Conclusion

The Green'’s functions for three-dimensional problem in
transversely isotropic thermoelastic diffusion medium
have been derived for static case. After applying the
dimensionless quantities and using the operator theory,
we have obtained the general expression for components
of displacement, temperature distribution, mass
concentration and stress components in Cartesian as
well as in cylindrical coordinates. Based on the obtained
general solution, the three- dimensional Green’s function
for a study point heat source on the apex of a
transversely isotropic thermoelastic cone in case of
steady state problem are derived by four newly
introduced harmonic functions. All components of
thermoelastic field are expressed in terms of elementary
functions and are convenient to use.

From the present investigation, a special case of
interest is deduced to depict the effect of diffusion. From
numerical results, we conclude that the values of

ur’axial displacement u; and

remain more in case of
(WD) in comparison to

horizontal displacement

temperature change T
themoelastic  diffusion
themoelastic medium (WTD).
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Appendix A

a=5,(7104 — 550g), b =(5; —57)0l + 55(d —Gg) + U (1.~ 54) + 61 (1103 — I5047) — 54071,
C=(8 ~)a, +0(5—8,) 06, +6,() —0)) +6,(0, — ), d =6,(q —a),
2 2
Pl
ox" oy

Appendix B

&, = (0 — ;)4 by = 6,(0 —0e) + 6 (0 — ) + (5,9, — %) —76,%
C, = (0 +&%)5, + (G — %), —Gss;

a, :(ch"’q;)% +51(q:_q;)+54(q; —q;), 62 :é‘]_(qu;_glq;)_'_
81(‘12 +q;) —%(q; +q§) +54(qg —q;), C,= 51(6’1(31; _71q;)’
a,=(q — )3, by =(8; —87)0% + (0 — ) +6,(0h + %) — 5,5
C = (6 —6;)0% +6,(0, +0) — 5, (a0, +) - 56,0, d, =56,0;
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In this paper, several properties of the multivalent harmonic uniformly convex classes

Ku(ma) and

K.(m.a) were investigated. Coefficient bounds, distortion theorem, extreme points, convolution condition,
convex combinations and integral operator for these classes were obtained.
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INTRODUCTION

A continuous complex valued function f =u+iv \whichis
defined in a simply connected complex domain D is said

to be harmonicin Difboth Y and Vv are real harmonic
in D. In any simply connected domain we can write:

f(z)=h(z)+9(2), (1)

where h and g are analytic in D. We call h the analytic
part and g the co-analytic part of f. A necessary and
sufficient condition for f to be locally univalent and sense-

preserving in D is that IN @9 @I in D (Clunie and
Sheil-Small, 1984).

Denote by ~H' the class of functions f of the form (2)
that are harmonic univalent and sense preserving in the
unit disc Y = 1ZKD for which f©@=f.@-1=0
f =h+geS,,

For
we may express:

f(z)=z+>az"+Yhz" bk
k=2 k=1 (2)

where the analytic functions h and g are of the form:

h(z)=z +iakzk, g(z)=i)kzk,|bl|<l. @)

Clunie and Sheil-Small (1984) investigated the class Sy
as well as its geometric subclasses and some coefficient

bounds for functions in S+ were obtained. Since then,

various subclasses of S+ were investigated by several
authors (Al-Shagsi and Darus, 2008; Chandrashekar et
al., 2009; Jahangiri, 1999; Murugusundaramoorthy, 2003;
Murugusundaramoorthy et al., 2009; Rosy et al., 2001).
Recently, Kanas and Wisniowska (1999), Kanas and
Srivastava (2000) studied the class of k -uniformly
convex analytic functions. For m>=1 and %=<a<l we let
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H(m) denote the class of multivalent harmonic functions
f@)=h@)+9@). where

h@)=2"+ Y az* g@)=bz", b,|<L
k=m+1 k=m

(4)

We consider the class K+ (M @) of functions of the form
(1) where h and g are given by Equation (4) satisfying
the inequality

Re 2°h"(z)+zh'(z)+2%9"(2)+29'(z)
zh'(z)-29'(z)

ZIz2h”(z)+zh’(z)+zzg”(z)+zg’(z)_m

zh'(z)-29'(z)

+Ma,

(®)

where m=>1 gnd O0<a<l
Using the fact that

— ie — i
Re@w)>Ww —m|+ma < Re[(L+e'"w —me'’]>ma, it follows

from the condition (5) that f is in the class K+(M@) if and
only if

R R
(6)

where m>1 and O<a<l
We note that:

Puting M =1 Ku@®)=HCV L&) (Kim et al., 2002).

Further, let K#(M@) pe the subclass of i)
consisting of functions of the form:
m S = —k
f@)=2"- 2 lalz" =3 bz (b, I<1).
k=m+1 k=m (7)

Recent interest in the study of multivalent harmonic
functions in the plan prompted the publication of several
articles, such as Ahuja and Jahangiri (2001, 2002, 2003),
Bshouty et al. (1999), Guney and Ahuja (2006).

In this paper, the coefficient bounds for the classes

Ku(Ma) ang  Kw(Mma)as well as distortion theorem,
extreme points, convolution, convex combinations and

integral operator for functions in the class K+ (M) were
obtained.

COEFFICIENTS
THEOREM

BOUNDS  AND DISTORTION

Unless otherwise mentioned, it was assumed in the
course of this study that

Osa<lm=2l gnd zeU | We began with a sufficient

Ku(m.@)  ang

condition for functions in the classes
Ku(m,a@) and obtained distortion theorem for functions

in the class K+ (M)

Theorem 1

Let f =h+g, where h and g are given by Equation
(4), and satisfy the condition

o k[2k —m 1+ )] |a |
Gmam@-a)+1-m(l-a) -1 K

o k[2k + m(1+ )] |b |<1
Sml-a)+1-ml-a)-14" " 2"

+

©)

Then f(@z)eK,(m, a).

Proof

Assume that Equation (8) holds. It suffices to prove that

Re{m +(1+ei“’)[Z e Hi:’(é))j;?(;()z )+29'2) —m]—ma}

—Rre2@) g
B(z) (9)
Using the fact that "¢ ) >0 if and only if 11+W PI1-w |,
it suffices to show that
|[A(z)+B(z)|-|A(z)-B(z)[=0, (10)

where

A@z)=[A-m)(1+e'")+m(1-a)]zh'(z)+(@A+e"*)z*h"(z)

HL+m)(1+e'?)-m(L-a)lzg'(2) +(1+e')2%9"(2)
and
B(z)=zh'(z)-z9'(z).

Substituting for A(z) and B(2) in the left side of Equation
(10) we obtain:

|A(z)+B(z)|-|A(z)-B(z)|

ML+ mA-a)z"+ % K[k -ma+(k —m)e +1a,z ¢
k=m+1



+ 3 K[k +ma+(k +m)e’~1b, 2
k=m

Mm@l + 3 K[k —ma+(k —m)e ~1a,z*
k=m+1

+§mk[k +ma+(k +m)e'? +1]b,z"

>m[m1-a)+D]fz|" —kzimﬁk[Zk -m(+a)+1fa 2]
—k:%lk[Zk +m(+a) -1, |z [
~[m(m@-a)-D]|[" —k:imk[zk ~m(+a)-1lfa |
- 3 K[2k +m(t+a)+ b, 2|

>m(ml-a)+D) -|(m@d-a)-Df|z|"

-{1— 3 2k[2k —m(1+a)] iz
mam(m(l-a)+1) - |(m@-a)-1)[]

2k[2k +m(1+a)] a Hzlk_m}
m{(m(1—a)+)—|(m1-a)-D]"

>m[m@1-a)+1)—|(m@1-a)-1)-

_{1_ s 2k [2k —m (1+a)] a|
Kmam[(m@l-ae)+1) —|[(m@L-a)-1)[]
2k[2k +m(L+a)] b I}

nm[(m@-a)+1)—|(ml-a)-D]]"

using Equation (8).

The functions

s mim@-a)+)-[me-a)-1) |

f@z)=z2"+ Z

KSme k[2k —m(1+a)] ‘

+i m(m@-a)+1)—|(m@-a) -]
“ k[2k +m @1+ )] - (11)

Z |Xk|+2|yk|—

where  k=m+1 shows that the coefficient
bound given by Equation (8) is sharp. This completes the
proof of Theorem 1.

Corollary 1

Let f =N+9. where h and g are given by Equation
(4). Also, let 1=m=1/(1-a) and if the condition:

ik[Zk m1+a]‘ " Zk[2k+m1+a]‘ b <1
k=m+1 m( (12)
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holds, then f (@)€K, (m,a).

Corollary 2

Let f =h+9. where h and g are given by Equation (4).
Also, let M=1/(1-2) and if the condition

K[2k —m@+a)lla |+ S k[2k +m@+a)]p, | <1,
k% 2| Z o, | 9

holds, then f (2) &K, (m.a).

In the following theorem, it is shown that the condition
(12) is also necessary for function f =h+9 where f is of
the form (7).

Theorem 2

Let f=h+d. pe given by the form (7). Then

f(2)eKu(ma), if and only if the coefficient bound (12)
holds.

Proof

KH (m,a)gKH(mra)!

Since we only need to prove this

part of the theorem. To this end, for functions Ku(m,a),
it was noticed that the necessary and sufficient condition

to be in the class K+ (M.@) s that:

Re{m +(l+e‘¢’){Z Zh"(z)ﬂ:i((ziﬂgg(ﬂ() )+2g '(Z)—m]—ma}zo.
h'(z

(14)

This is equivalent to

21-a)2™-Y" Kk[2k-m(L * K[2k+m @), |z¢
Re m? (a2 "y k2k-m(ba)]a 2 z““fk +m(L+a)lly |2 >0,
" Zk Mk\ak\z +zkzmk\bk\z

This condition must hold for all values of Z €U and for
real a so that on taking z =r<1 , the above inequality

reduces to:
»  Kk[2k -m(1 n k[2k +m(1 m
PZmﬂM‘ B, |r* " -3 mw‘b I3
m’(l-«a m’(l-a >0
1- ZK:mA ak‘rk m+2k:mk ‘bk‘rkim o (15)
Letting " —>1  through real values, we obtain the

condition (12). This completes the proof of Theorem 2.
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Theorem 3

Let the function f @) given by Equation (7) be in the class
Ku(Mm, @), thenfor z=r<1

W+lo, D" + s (Ao~ Fa ba ) m@-@) <1
f @)=
@+, Dr™ + 25 (st~ At b )" M) 21 (16)
and
(Wl pr™ — (B - 28, e m-a) <1
If (2)|>
Wl Dr™ - (A% - 282, ) m@-a) =1, a7
1—
b, <479
where (3+a)
Proof
if MA-2) <L e have,

If @) <@+, Drm+ > (a. |+, re

k=m+1

<@+, Dr™+ > (a |+ prm

k=m+1

)
<A+, Dr™ + Gz
k=m+1

(m +1)(2+m(1 a)) |ak |+|bk |)rm+1

(1-a)

<@, "+ m2(l-a) { i [k[zk 2—m(l+a)]]‘ak‘
Mm+)R2+mA-a)]| &Ll m?l-a)

+(k[2k +m(l+a)]j‘bk }M
m?(l—a)

<@+, prm+
Mm+D[2+m@A—a)] 1l-a)

=(1+\bm\)r'“+ 1 [ m2(l-a) B m?(3+a) ‘bm‘)rmﬂ’
m+1\2+m@ll-a) 2+m(l-a)

mz(l—a) |:1_(3+a)j|rrn+l

which proves the assertion (16) of Theorem 3. The
proof of the assertion (17) is similar, thus, it was omitted.

Remark 1

Putting m=1 in Theorem 3, we improve the result

obtained by Kim et al. (2002) by adding the condition
(-a)

\bl\ﬁm-

The following covering result follows the left hand
inequality Theorem 3.

Corollary 3

Let the function f@) given by (7) be in the class
K @ then for 21=7<1 \we have:

2+m (3-a) _ 2+m(3-2m a(2m+1)
m)(Zm-a)  (m+D(2+m(-a) ‘b ‘ yMml-a)<1
W< cf V),
1+m[3+m (1-a)-a] 2+m (3-2m-a(2m+1)
(M(Zmla) —  (m+D2m () ‘b ‘ yMml-a)21

where " 24mB-2m—a(2m +1)’
" 2+4m@B-2m —a(2m +1)

or

EXTREME POINTS

Here, the extreme points of the closed convex hull of the
class K (m,a) cleo Ku(M,@).  \yas
determined

denoted by

Theorem 4

Let f(z) be given by (7), then f (z)eclco Ku (ma) jf and
only if

f(Z)— [X h (2)+Y,9,@)], 18)
where
h,(z)=2",
2"l M (k2m+1) |, ml-a)<1
hk(z):
Zm—mzk(k 2m+1) ,m(l—a)Zl,
And
m m2(l-a —k
z —mz (k>m) ,ml-a)<1
gk(z):
m —k
z —mz (k Zm) ,m(l—a)Zl,
Where Z (X +Yi)=L %, 20 and Y« =0

In particular, the extreme points of the class K (m,a)
are (jkzm+D o0 (o =m), respectively.



Proof
For a function f(z) of the form (18), we have:

(0= b @)+y,9, )]

i X |2 —(la)zkj_i_yk[zm_mz(l—a)k
. k[2k -m(L+a)] K[k +m(l+a)]

S ) RS ) MW

wmak[2k —-m@+a)] k= k[2k +ml+a)]”

i k [2k —m(1+oz)]| |+i k[2k +m(1+a)]|bk|

G mil-a) & mi(l-a)
= Zx +Z:yk =1-x, <1,
k=m+1

and T @)eclco Ku(m,a).

Conversely, assume that | (Z) €clco Ku(m,a). 1hen

m’(l-a)

& Tk —m+a)’

and

_ mz(lfa)
K2k +m(1+a)]

set

X, = k [2k 7m(1+a)]‘ak"
m?(l-a)

and

_KI2k rmacaly
KT mil-a) K

Then by using Equation (12), we have
0<x, <k =m+1m+2..) and 0<y, <Uk =m,m+1..).

X, =1- Zxk —Zyk.
k=m+1 k=m

is defined and the equation:
f(z)= Z(thk +ykgk)'
k=m

proof of Theorem 4.

is obtained. This completes the

CONVOLUTION AND CONVEX COMBINATION

In this section, the convolution properties and convex
combination were determined.

EL-Ashwah et al. 83

Let the functions ;@) be defined by:

Z|ak]| Z|bk,| (j =12),

(19)

be in the class K#(Ma)  we denote by (:*f)@) the
convolution or (Hadamard Product) of the function f:()
and ()  thatis,

(F,+6)@)=2"- Y o, o’
k=m+1

= —k
k
= 2 bialpeaf2
k=m

: (20)
while the integral convolution is defined by
- = m,,|pb, |-
(fof )z)=2" - z m|ak;||a“v2|zk _ Z m| k;” k'2|2k.
k=m+1 K=m (21)

We first show that the class K#(M.@) s closed under

convolution.

Theorem 5

For 0<é<ax<l f1(z)€KH(m‘a) and

f,z)eKn(m,s).

, let the functions

Then
(F,*f,)(2) eKnu(m,a) cKn(m,s), 22)
(f0f,)z) eKn(m,a) =K (m,d). 23)

Proof

Let @)1 =12) given by Equation (19), where () isin

the class K#(M@) and :¢) bein the class K+ (M.9).
It therefore shows that the coefficients of (f.*f.)(z) satisfy
the required condition given in Equation (12).

f,(2) eKn(m,5) 3y o[ <1 beaf<2

For , we note that and

Now for the convolution functions (f 1)), we obtain

k[2k -m@+5
Iy R

(l 5) k.1|[¥k,2

kpk ma+5n = k[2k +m(L+8)]
Z S M
. kpk m1+an| I3 = k[2k +m(1+a)]

_k:m+1 k:m m (1 a) |ka1|£1’
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since 0<d<a<l gnd f,(z)eKn(m,a).

Thus (*f2)@) eKu(m @) cKu(m,8). The proof of the
assertion (23) is similar, thus, it was omitted. This
completes the proof of Theorem 5.

Next we show that K+ (m.a)
combinations of its members.

is closed under convex

Theorem 6

The class K+ (M. @) s closed under convex combination.

Proof

For 1 =120 1o fi@)eKuMa) yhere

d d —k
fi(2)=2"- > l.|z" - ||z @eUsi=12.),
k=m +1| | k=m | | (24)
>t =1 0<t, <1
then from (12), for i1 , the convex

combination of fi?) may be written as:
d d d iy —k
Ztifi (Z):Z " - z (2[. |ak,i |)Z ‘- Z(Z:tu |bk,i |jz .
i=1 k=m+1\i=1 k=m \li=1 (25)
Then by using Equation (12), we have

5 A ntg )| 5l )

k=m+1 m (l a) i=1
= [ & k[2k -m(+a)] K[2k —m(L+ )]
—E{Z,wmma“+2mmﬂﬂmﬂ

=1 k=m+1

Ms
|/\

:1

This completes the proof of Theorem 6.

Integral operator

Here, a closure property of the class Ku(m.a) was

examined under the generalized Bernardi-Libera-
Livingston integral operator (Saitoh et al., 1992),
Len (@) which is defined by:
L. (2))= (“mjjt“f t)dt, ¢ >-m.

(26)

Theorem 7

LetKH (m y C()

Then

Lo @) eKu(m,a).

Proof

From Equation (26), it follows that

Lo (f @)= f+mjﬁ*ﬁﬂﬂﬂﬂﬂ

:(C :Cm jl:jtcl(tm _ i aktk
0 k=m+1

—~ iAkzk —inzk
k=m

k=m+1

Jdt —](t“ b, t* )dt}

Where

c+m c+m
A = a,B, = b, .
K (c+kjk K (c+kjk

Therefore,

= k[2k —m(1+a)][c+mj‘ak‘+‘z”°: k [2k +m(1+a)](c+mj‘bk‘

e mil-a) c+k P m’(l-a) c+k
o 3 MR mara), | S ek o)

b, [<1.
P e BT DT

Since @) eKu(m,a),
L, (f @) eKn(m,a).
This completes the proof of Theorem 7.

by using Corollary 1, then

Remark 2

Putting m=1 in the above results, the corresponding
results by Kim et al. (2002), with k =1 is obtained.
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